1. 序論

我が国の橋梁は経年劣化による腐食損傷が多く報 告されている。一般的に、腐食損傷への対策として 再塗装を行うが、腐食減厚が進行している場合、鋼 板をボルトにより添接する当板ボルト補修や部材の 交換等が行われることが多い。しかし、これらの補 修は、母材への孔明けや現場での溶接、重機等の設 備が必要になるなど施工が容易ではなく、経済的に も負担となる。また、腐食減厚が激しい場合、腐食 面の不陸により当板接合を用いる高力ボルトの摩擦 係数が確保できなくなる。以上のことから、効率的 かつ合理的な補修方法の提案が求められている。

本研究では、図 1.1 に示す実橋梁腐食分布を基に 腐食損傷を再現した試験体を作製し、腐食による腹 板の減厚及び破断がせん断強度特性に及ぼす影響の 検討を行った。また、補修方法の要求性能として、 せん断強度が健全相当まで回復し、更に耐荷力以降 でも急激に耐荷力の低下がないこととし、数種類の 補修材を選定し、せん断耐荷力実験を行い、せん断 耐荷力、せん断座屈強度、地震等の大きな外力に対 するダクティリティについて評価を行った。

2. 実験方法

2.1 試験パラメータ

本研究では、腐食損傷を模擬した試験体9体、補 修試験体9体、全18体のせん断耐荷力実験を行った。 2.1.1 損傷モデル

実橋梁腐食分布は、図 1.1 に示すように、水平補 剛材上部腹板や下フランジ近傍腹板に著しい減厚が 生じている¹⁾²⁾。腐食損傷を模擬した試験体を図 2.1 に示す。試験体は、上下フランジ及び垂直補剛材で 囲まれた腹板(500mm×500mm)を着目パネルとした。 損傷のない試験体(N)を健全とし、腐食により水平補 剛材上部腹板の破断損傷を模擬した試験体を上部欠 損(DU)、腐食により下フランジ近傍腹板の破断損傷 を模擬した試験体を下端欠損(DL)とした。

2.1.2 補修モデル

本研究では、補修材料の選定として、次の要求性 能を満たす材料の選定を行った。①腐食耐久性②補 修の容易性③施工性。以上を満たす補修材として、 本研究では薄鋼板 2.3mm(以下 ST)・高強度炭素繊維 (以下 CF)を選定した。ST は、メッキとナイロン紛 体塗装で腐食耐久性を満たすものと考えた。表 2.1 に、補修材の材料特性を示す。図 2.2 に、上部欠損 (DU)及び下端欠損(DL)に対して補修を行った試験 体を示す。以下に各試験体の詳細を示す。

. 111	<u>項目</u>	<u>アクリル系</u> <u>接着剤</u>	<u>エポキシ系</u> <u>接着剤</u>	<u>ポリウレアパテ</u>
Ì	<u>弾性係数</u>	1000 N/mm ²	1000N/mm ² 以上	68 N/mm ²
	<u>引張強度</u>	1N/mm ² 以上	45 N/mm ²	11 N/mm ²

設計工学講座 利光 崇明 (a) 上部欠損(DU)に CF をエポキシ系接着剤で腹板全面に接着した試験体(RCF1)である。

(b) 上部欠損(DU)に CF を腹板上面にエポキシ系接着剤で接着した試験体(RCF2)である。

(c) 下端欠損(DL)にSTをアクリル系接着剤で下フランジ及び腹板面に接着した試験体(RST)である。

(d) 下端欠損(DL)に ST をアクリル系接着剤で接着
後、腹板面に CF をエポキシ系接着剤で接着した試
験体(RSTCF2)である。

(e) 下端欠損(DL)にSTをアクリル系接着剤で接着後、 腹板面にポリウレアパテを塗布し、CFをエポキシ系 接着剤で接着した試験体(RSTCF2)である。

(f) 下端欠損(DL)に ST をポリウレアパテで接着後、 腹板全面にポリウレアパテを塗布し、CF をエポキシ 系接着剤で接着した試験体(RSTCF3)である。

(g) 比較として、下端欠損(DL)に当板ボルト補修を 行った試験体(RHB)を作製した。

ここで、CFの接着方法は、1層目はせん断引張方向に、2層目は45°角度を付けせん断圧縮方向に接着し、同様に3,4層目は交互に接着し片面4層とした³⁾。表22に、接着剤の材料特性を示す。ポリウレアパテは、弾性係数が低く補修材の剥離を防止する効果がある。また、本実験では腹板4.5mmと3.2mmの試験体を作製し、実験を行った。

2.2 実験方法

図2.3 に、本実験の載荷時試験状態を示す。2 点載 荷・2 点支持することにより着目パネルにせん断力 を与え、実橋での桁端部の断面力状態をできるだけ 再現した。計測は、着目パネルのせん断座屈面外変 位を捉えるため、変位計を設置した。また、せん断 座屈時に生じる腹板表裏のひずみ分岐挙動を捉える ため、3 軸ゲージを張付けた。図2.4 及び図2.5 に、 変位計とひずみゲージ設置位置を示す。

3. 実験結果

3.1 せん断力と鉛直変位関係

図 3.1 に、実験で得られたせん断力と鉛直変位関係を示す。縦軸のせん断力は着目パネルに作用する せん断力、横軸の鉛直変位は載荷装置2の鉛直変位 である。また、本研究ではせん断耐荷力は着目パネ ルに作用する最大せん断力と定義した。

○腹板 4.5mm 上部損傷補修モデル

図 3.1 の(a)より、上部欠損(w4.5/DU)は健全 (w4.5/N)と比較してせん断耐荷力が 26%低下した。 これに対し、CF を腹板全面に接着した試験体 (w4.5/RCF1)は、上部欠損(w4.5/DU)と比較してせん 断耐荷力が 170%回復し、CF を腹板上面に接着した 試験体(w4.5/RCF2)は 142%回復した。w4.5/RCF1, w4.5/RCF2 共に、健全相当の耐荷力回復が見られた が、最大せん断力後補修材の剥離により、せん断耐 荷力が著しく低下した。

○腹板 4.5mm 下部損傷補修モデル

図 3.1 の(b)より、下端欠損(w4.5/DL)は健全(w4.5/N) と比較してせん断耐荷力が 16%低下した。これに対 し、当板ボルト補修 (w4.5/RHB)は、下端欠損 (w4.5/DL)と比較してせん断耐荷力が 141%回復し、 ST を接着した試験体(w4.5/RST)は 115%回復した。 w4.5/RHB, w4.5/RST 共に、健全相当の耐荷力回復が 見られた。w4.5/RHB は、最大せん断力後のせん断 耐荷力の増大が確認できた。w4.5/RST は、終局時に 補修材が剥離し、せん断耐荷力の低下を確認した。

○腹板 3.2mm 下部損傷補修モデル

図 3.1 の(c)より、下端欠損(w3.2/DL)は健全(w3.2/N) と比較してせん断耐荷力が 18%低下した。これに対 し、当板ボルト補修(w3.2/RHB)は、下端欠損 (w3.2/DL)と比較してせん断耐荷力が 128%回復し、 STを接着した試験体(w3.2/ST)は 128%、ST と CF を 接着した試験体(w3.2/RSTCF1)は 214%、腹板面にポ リウレアを塗布した試験体(w3.2/RSTCF2)は 189%、 全面にポリウレアを塗布した試験体(w3.2/RSTCF2)は 189%、 全面にポリウレアを塗布した試験体(w3.2/RSTCF3) は 211%回復した。各補修モデルは、健全相当の耐 荷 力 回 復 が 見 ら れ た 。 w3.2/RST,w3.2/RSTCF1, w3.2/RSTCF2 は、最大せん断力後補修材の剥離によ り、せん断耐荷力が著しく低下したが、w3.2/RSTCF3 は徐々に補修材が剥離し、せん断耐荷力も徐々に低 下する特徴を示した。

3.2 せん断座屈強度曲線

図 3.2 に、各試験体のせん断座屈強度をプロット したせん断座屈強度曲線を示す。縦軸の τ_{cr}/τ_y は、各 試験体のせん断座屈強度を降伏せん断応力で除し無 次元化した。横軸は、事前に算出した各試験体の幅 厚比パラメータ R_r である。本研究では、腹板の面外 変位と腹板表裏の主ひずみの分岐挙動から、腹板が 急激に面外に変位するせん断力をせん断座屈強度と した。また、補修モデルの幅厚比パラメータ R_r は、 CF 一層当たりの厚さを鋼換算し、母材板厚に足すこ とで算出した。当板ボルト(RHB),薄鋼板接着(RST) モデルは、補修材より上部腹板を一パネル(500mm× 400mm)とし、幅厚比パラメータ R_r を算出した⁴⁾。

〇腹板上部損傷補修モデル

図 3.2 の(a)より、CF を腹板全面に接着した試験体 (w4.5/RCF1)は、幅厚比 0.82, τ_{cr}/τ_y=0.64 となった。 w4.5/RCF1 は、幅厚比によるせん断座屈強度の回復 が小さく、補修材の剥離がせん断座屈強度の回復を 抑制していると考えられる。

〇腹板下部損傷補修モデル

図 3.2 の(b)より、ST を接着した試験体(w3.2/RST) は、幅厚比 1.51, $\tau_{cr}/\tau_y=0.95$ となった。w3.2/RST は、 幅厚比によるせん断座屈強度の回復以上にせん断座 屈強度が回復したことから、薄鋼板接着補修は、せ ん断座屈強度に対して補修効果が高いと考えられる。

(b)下部損傷補修モデル図 3.2 せん断座屈強度曲線

(a) 上部損傷補修モデル

3.3 せん断耐荷力曲線

図 3.3 に、実験で得られた各試験体のせん断耐荷 力をプロットしたせん断耐荷力曲線を示す。縦軸の τ_{wt}/τ_vは、各試験体のせん断耐荷力を降伏せん断応力 で除し無次元化した。横軸は、事前に算出した各試 験体の幅厚比パラメータ R_rである。

○腹板上部損傷補修モデル

図 3.3 の(a)より、CF を腹板全面に接着した試験体 1 (w4.5/RCF1)は、幅厚比 0.82、 $\tau_{ut}/\tau_v=0.85$ となった。 w4.5/RCF1 は、幅厚比によるせん断耐荷力の回復が 小さく、補修材の剥離がせん断耐荷力の回復を抑制 していると考えられる。

〇腹板下部損傷補修モデル

図 3.3 の(b)より、ST を接着した試験体(w3.2/RST) は、幅厚比 1.51、 t_{cr}/t_v=1.33 となった。w3.2/RST は、 幅厚比によるせん断耐荷力の回復以上にせん断座屈 強度が回復したことから、薄鋼板接着補修は、せん 断耐荷力に対しても補修効果が高いと考えられる。 3.4 破壞特性

○損傷モデル破壊形態

図 3.4 に、損傷モデルの破壊形態を示す。図中の グラフは、縦軸に腹板高さ、横軸に各腹板高さに設 置した変位計の面外変位を着目パネルに作用するせ ん断力毎に描いたものである。図 3.4 より、上部欠 損(w4.5/DU)は、破断箇所より下のパネルで面外に変(a)高強度炭素繊維 位しており、張力場形成は腹板中央より下方に形成 していることが分かる。下端欠損(w3.2/DL)は、腹板 下方の面外変位を大きくなっており、張力場形成は 腹板中央より上方で形成していることが分かる。

○補修モデル破壊形態

図 3.5 に、補修モデルの破壊形態を示す。図 3.5 の(a)より、上部欠損(w4.5/DU)に対し CF を腹板全面 に接着した試験体(w4.5/RCF1)は、腹板中央が徐々に 小さく面外に変位しており、張力場形成は腹板中央 で形成を確認した。最大せん断力後は CF が張力場 アンカー部から急激に剥離した。図 3.5 の(b)より、 下端欠損(w3.2/DL)に対し当板ボルト補修を行った 試験体(w3.2/RHB)は、腹板全体の面外変位が小さく、 せん断力が大きくなると腹板中央近傍が徐々に面外 に変位しており、張力場形成位置は、当板よりも上 方のパネルで形成を確認した。図 3.5 の(c)より、ポ リウレアパテを全面塗布した試験体(w3.2/RSTCF3) は、最大せん断力に達するまで腹板全体の面外変位 は小さいことが確認できる。破壊形態より、張力場 アンカー部で剥離が見られるが、面外変位より張力 場形成は腹板中央で形成されていることが分かる。

参老文献

1) 下里哲弘, 玉城喜章, 有住康則, 丸山直人, 矢吹哲哉, 小野 秀一:腐食劣化した鋼 I 桁のせん断耐荷力実験(その1), 土木学 会第 66 回年次学術講演会, I-523, pp.1045-1046, 平成 23 年 9 月

4. 結論

以下に本研究で得られた結論をまとめる。 (1) 腹板上部の破断損傷モデルは、健全と比較して 張力場が腹板中央より下方に形成する特性を示し、

腹板下部の破断損傷モデルは、張力場が腹板中央よ り上方に形成する特性を示し、両者ともせん断耐荷 力及びせん断座屈強度が低下した。

(2) 下部補修モデルでは、薄鋼板及び腹板面にポリ ウレアを塗布した試験体(w3.2/RSTCF3)は、健全相当 までせん断耐荷力及びせん断座屈強度の回復が見ら れ、ダクティリティを有していた。

(3)上部補修モデルでは、健全相当までせん断耐荷力 の回復が確認できた試験体はあったが、せん断座屈 強度の回復及びダクティリティを有する補修工法は なく、更なる補修工法の検討を続ける必要がある。

2) 玉城喜章, 下里哲弘, 有住康則, 矢吹哲哉, 小野秀一: 腐食 劣化した鋼 I 桁のせん断耐荷力実験(その2), 土木学会第66回年 次学術講演会, I-524, pp.1047-1048, 平成 23 年 9 月

3) 奥山雄介, 宫下剛, 若林大, 小出宣央, 秀熊佑哉, 堀本歴, 長井正嗣, 鋼桁端部腹板の腐食に対する CFRP を用いた補修工法 の実験的研究,構造工学論文集 Vol.58A

4) 土木学会:座屈設計ガイドライン(2005年度版), 2005.10.

5) 新日鉄住金マテリアルズ株式会社コンポジット社試験成績書