塩害劣化を模擬した RC 梁の熱プレストレス工法の検証実験

1.はじめに

厳しい塩害環境下に長期間曝されると、RC 梁の 内部鉄筋が腐食することで膨張し、かぶりコンク リートの剥落及び、鉄筋露出などの塩害劣化が生 じ、構造安定上、問題となる。これらの背景から、 塩害劣化により耐荷性能が低下した RC 梁に対し て、効果的な補修・補強工法が求められている。 現行の断面修復や当板工法は RC 梁にかかる活荷 重応力を低減させることは可能であるが、かぶり コンクリートの剥落により主鉄筋に作用していた 死荷重応力は抜け、耐荷力に大きな影響を与える。 鉄筋の死荷重応力を回復させ、RC としての力学特 性を回復させるため、鉄筋にプレストレスを導入 する方法を検討した。本稿では塩害劣化を模擬し た小型 RC 梁を対象に、既往の工法と熱プレスト レス工法を比較し、プレストレス導入、プレスト レス効果の確認試験について記述する。

2. プレストレス導入

2.1 試験体

実験に用いた RC 梁を、図1、図2に示す。試験 体は全長1.7m、梁高20cm、幅12cmの長方形断面 梁であり、内部鉄筋は全てSD295Aである。上記 の試験体に塩害によるコンクリートの剥落を模擬 するため、試験体中央部から左右に600mmの範囲 に、試験体のかぶり厚20mmに加え、主鉄筋の半 径分をはつり、鉄筋を露出させた。表1に試験体 パラメータを示す。図3に示す剥落模擬試験体に 対して、熱プレストレス工法を施した。その手順 を(a)~(d)で示す。

(a)鉄筋のゲージ貼り(写真 1)

露出している鉄筋下面にひずみゲージを7枚 200mm間隔で貼る。断面修復をすることを考慮し、 ひずみゲージをコーティングした。

(b)アンカー打ち込み(写真 2)

はつり部分にケミカルアンカーを14本、80 mmの 深さで打ち込んだ。(材質 SS400、径 12mm、長さ 150mm、埋め込み深さ120mm)

(c)アンカーと鋼板との取り付け(図 4)

アンカーの位置に、それぞれ孔をあけた鋼板(厚 さ 6mm)を取り付けた後、ナットで固定した。なお 鋼板にはアンカーの孔の間に直径 6mmの丸鋼を付 けておく。

(d)断面修復(写真 3)

型枠注入工法にて無収縮モルタル(圧縮強度 54.7N/mm²)を流し込み、断面修復を施した。 (e)鋼板溶接(写真 4,写真 5)

溶接線1本の試験体と溶接線3本の試験体のそれぞれの溶接部を半自動溶接機(ワイヤーサイズ 1.2mm)で2パス溶接を、溶接電流175A、溶接電圧 25Vで施した。溶接線3本の試験体は片側から一 方向に溶接を行った。

1700

構造研究室 堤 哲郎

写真4 鋼板溶接前

写真5 鋼板溶接後

2.2 試験方法

2.1(d)の鋼板溶接時の鉄筋下面のひずみを計測 し、鋼板の熱収縮による熱プレストレス導入の確 認を行った。溶接線1本、溶接線3本の試験体の 測定するひずみゲージ位置と溶接部を図5に示す。

2.3 試験結果

溶接により鉄筋に導入されたひずみ値を、表 2 及び表3で示す。表より溶接線1本及び3本の試 験体ともに、溶接部から 200mm の範囲にて鉄筋に プレストレス導入されている。一方、溶接部から 200mm 以上離れた鉄筋端部ではひずみの変化がな かった。溶接線3本は、片側一方向から溶接を行 ったため、プレストレスの導入に偏りがあった。

3. 静的載荷試験

3.1 試験方法

熱プレストレス効果の確認として 3 点曲げ静的 載荷試験を行った。5kN 毎に除載荷し、鉄筋降伏 荷重の90%から単調変位増分にて破壊まで載荷し た。図6に変位計及びひずみゲージ位置を示す。

3.2 試験結果

(1)荷重-変位関係、

図 7、8 に各試験体の荷重-変位の関係を示す。 約15kNを超えた後、健全に比べ剥落模擬は剛性の 低下がみられる。また溶接線3本、溶接なし鋼板 については、剛性の向上がみられ、最大荷重も増 加した。しかし、溶接線1本は約60kN時に、たわ みが急激に増加する現象がみられ、剛性の向上は みられるが、最大耐荷力は増加しなかった。

(2)荷重-鉄筋ひずみ関係

図9に荷重-鉄筋中央ひずみの関係を示す。健全 に比べ、溶接線1本、溶接線3本、溶接なしは溶 接の有無に関わらず、鉄筋中央部の降伏荷重が約2 倍増加した。これは荷重が試験体下面の鋼板に分 散したためと考えられる。溶接を施した試験体は、 プレストレス導入分の降伏ひずみの値が増加した。 (3)コンクリートの中立軸の特性

図10にコンクリート中央部のひずみの測定箇所 の高さとひずみの関係を示す。図より、それぞれ の試験体の中立軸の位置を示す。健全に比べ、溶 接の有無に関わらず、鋼板補強によって中立軸の 位置が低くなることがわかる。また溶接を施した 試験体の方が、より低くなる傾向がみられる。こ れによりプレストレス導入が、中立軸の位置を低 くする効果があると考えられる。

4.まとめ

(1)熱プレストレス工法により鉄筋にプレストレス 導入できる。

(2) プレストレス導入により、プレストレス導入分 の終局時の鉄筋のひずみが増加する。

(3) プレストレス導入により中立軸の位置がより 低くなった。

(4) 溶接線3本、溶接なしは最大耐荷力が向上する が、原因は調査中だが溶接線1本は向上しない。

図 10 中央部のひずみ分布

参考文献

1)堤哲郎、下里哲弘、有住康則、長嶺由智、稲福英三、 土木学会西部支部沖縄発表会概要、塩害劣化モデルの RC 梁の熱プレストレス補強時の応力確認試験 2012