激しい腐食損傷を受けた鋼工桁のせん断耐荷力特性に関する研究

1. 序論

近年、鋼橋において激しい腐食損傷が多く報告 されている。しかし、鋼部材の腐食損傷が鋼橋の 耐荷力へ及ぼす影響は十分に把握されていない。 そこで本研究では、腐食損傷がせん断強度特性に 及ぼす影響を解明するため、激しい腐食損傷を模 擬した試験体を設定しせん断載荷実験を行った。

2. せん断耐荷力実験

2.1 試験体

実験に使用した試験体の形状及び寸法を図1に 示す。試験体はSS400を使用し腹板板厚は4.5mm である。試験体数は7体とし、この内5体が激し い腐食状態を模擬したものである。図1に示す下 部欠損モデルは下フランジ近傍の激しい腐食損傷 を再現するため、腹板と下フランジとの境界部を 切断した。下部切上モデルは下部欠損モデルに加 え垂直補剛材に沿って切断した。中央減厚モデル は腹板中央部の腐食減厚を再現するため腹板中央 部を切削した。切削部の残存板厚は2.85mmである。 HS 上欠損及びHS上減厚モデルは水平補剛材上部 の激しい腐食状態を再現するため、水平補剛材上 部を切断及び切削した。なお、水平補剛材上部の 切削部の残存板厚は1.03mmである。

2.2 実験方法

本実験に用いた試験体及び載荷条件を図 2 に示 す。本実験では鋼 I 桁試験体中央部の上下フラン ジ及び垂直補剛材で囲まれた腹板を着目パネルと した。図 2 に示すように試験体中央部の着目パネ ルは曲げが小さく、せん断力が支配的な荷重状態 とし、激しい腐食損傷の発生しやすい鋼桁端部の 状態をモデル化した。また荷重は図 2 に示す載荷 装置 1 及び載荷装置 2 の 2 台の油圧ジャッキ(最大 載荷荷重 1000kN/台)を使用し $P_1: P_2$ が 1:3 を保 つように変位制御で同時に載荷した。支持条件は 支点 1 がピンローラー支持、支点 2 をピン支持と した。

実験では、着目パネル内に作用するひずみを計 1750mr 測するために、3 軸ひずみゲージを腹板表面に 17 支点1(ピンローラー) 点、裏面に 13 点貼り付けた。

3. 実験結果

3.1 最大せん断力特性

図3に各試験体のせん断カー鉛直変位関係を示 す。縦軸は着目パネルに作用するせん断力、横軸 は載荷装置2の直下の鉛直変位である。着目パネ ルに作用するせん断力は載荷装置2で載荷した荷 重を2/3倍して算出した。図よりHS健全は健全に 比べ最大せん断力が上昇した。腐食損傷を模擬し た試験体は健全に比べ、下部欠損、中央面外変位、 HS上欠損、HS上減厚、下部切上の順に減少した。 特に下部切上は健全に比べ最大せん断力が半分近 く減少した。

構造工学研究室 中島祐貴

図3 せん断力-鉛直変位関係

3.2 せん断座屈特性

次にせん断座屈荷重の算出方法を述べる。せん 断カー着目パネルの最小主ひずみの関係から、表 裏面の最小主ひずみが分岐する点の荷重を座屈荷 重とした。表裏面の最小主ひずみの差が初期段階 から徐々に開いているものは主ひずみの勾配が変 化した点をせん断座屈荷重とした。各試験体の座 屈荷重を表1に示す。表より、下部欠損、HS上欠 損、HS上減厚、下部切上、中央減厚の順にせん断 座屈荷重が低下したと言える。

3.3 主ひずみ方向特性

せん断座屈荷重時の主ひずみ分布を図4に示す。 着目パネル上に、3軸ひずみゲージから得た主ひず みをプロットした。黒線が最大主ひずみ、灰色線 が最小主ひずみを示しており、線分の長さがひず み量の大きさを表している。図より健全及び HS 健全は概ね腹板の対角方向にひずみが生じ、各点 の最大及び最小主ひずみの量は等しくなっている。 下部欠損及び下部切上、HS 上欠損、HS 上減厚は 模擬した腐食損傷部近傍のひずみが小さくなって いる。このことより模擬した腐食損傷部近傍では せん断力が腹板に作用していないため、支持条件 が3辺単純支持と考えられる。よって、健全の支 持条件である 4 辺単純支持に比べ腹板のせん断力 を負担する面積が小さくなる。ゆえに、腐食破断 したものは健全よりせん断耐荷力が低下したと言 える。

3.4 塑性域の特性

せん断座屈荷重時の塑性域の分布特性を図 5 に 示す。ここで、塑性域は実験より得られた 3 軸ひ ずみゲージで計測した値より算出した相当ひずみ を用いた。図中の塑性域の大きさの表示は、弾性 時である相当塑性ひずみが 0、相当塑性ひずみが降 伏ひずみの1倍以内、1倍以上2倍以内、2倍以上 の4段階に分けて表記した。健全は、腹板右側及 び左側上部に塑性域が発生している。HS 健全は、 水平補剛材近傍に塑性域の発生が見られた。下部 欠損は、健全に比べ腹板上部を中心に塑性域が発 生した。HS 欠損は HS 水平補剛材上部近傍で降伏 ひずみの 2 倍以上の相当ひずみが発生した。下部 切上、中央減厚、HS 上減厚の各ひずみは弾性域だ った。

4. 結論

- (1) 最大せん断力は下部切上が最も減少し、せん断 座屈荷重は中央減厚が最も減少した。
- (2)下部欠損及び下部切上は、腐食損傷近傍の腹板 にせん断力が作用していない事から3辺単純 支持である。よって、せん断力を負担する面積 が減ったので、健全の4辺単純支持に比べせん 断耐荷力が低下した。
- (3) HS 上欠損は、模擬した腐食損傷近傍に大きな 引張ひずみや塑性域が発生しており、支持条件 が4辺単純支持とは異なるものと考えられる。

下里・玉城・有住・矢吹・小野・三木:実腐食減厚分布を有する鋼プレ ートガーダー腹板のせん断強度特性に関する実験的研究

参考文献