

<u>目的</u>
弾塑性FEM解析モデルを用いて、以下の項目を検討
(1)既往の論文で定義されているプレートガーダーのせん断 崩壊過程と、プレートガーダーモデルのせん断崩壊過程の 比較検証
(2)腐食した鋼プレートガーダー をモデル化し、ウェブ、下フラ ンジの腐食分布がせん断崩壊・せん断耐荷力に及ぼす影響 を検討

(目的1)

既往の論文で定義されているプレートガーダーのせん断崩壊過程と、 FEM解析レートガーダーモデルのせん断崩壊過程の比較検討。

(結果1)

・プレートガーダーのせん断崩壊過程は、既往の論文と解析とでほぼ 同様であった。

・解析モデルによる塑性ヒンジの形成は、既往の論文とは多少異なる 特性を示した。この原因として、解析モデルにはせん断だけでなく、 曲げも作用していることが考えられる。

	2.ウェ	ブ腐食	- 下フランジ健全モデル ^{- ウェブ腐食TYPE A(ウェブ中腹,水平補剛材上部が腐食)}	
解析モデル			урани и пределати и пр	
			─ ウェブ腐食TYPE B(ウェブ中腹から下部に向かって腐食) ─	
解析モデル	せん断座困強 度て _{cr} (N/mm ²)	せん断壁凪向 重V _{cr} (kN)		
ウェブ健全	86.3	2252		
ウェブ腐食 TYPE A	59.8	1300		
ウェブ腐食 TYPE B	61.8	1368	(ウェブ平均板厚7.78mm) (mm)	

まとめ1 (目的1) 既往の論文で定義されているプレートガーダーのせん断崩壊過程と、 FEM解析レートガーダーモデルのせん断崩壊過程の比較検討。 (結果1) ・プレートガーダーのせん断崩壊過程は、既往の論文と解析とでほぼ 同様であった。 ・解析モデルによる塑性ヒンジの形成は、既往の論文とは多少異なる 特性を示した。この原因として、解析モデルにはせん断だけでなく、 曲げも作用していることが考えられる。

